翻訳と辞書 ・ Stewartstown, West Virginia ・ Stewartsville (disambiguation) ・ Stewartsville, Indiana ・ Stewartsville, Missouri ・ Stewartsville, New Jersey ・ Stewartville ・ Stewartville Formation ・ Stewartville, Alabama ・ Stewartville, California ・ Stewartville, Coosa County, Alabama ・ Stewartville, Guyana ・ Stewartville, Lauderdale County, Alabama ・ Stewartville, Minnesota ・ Stewart–Tolman effect ・ Stewart–Treves syndrome ・ Stewart–Walker lemma ・ Stewiacke ・ Stewiacke railway station ・ Stewiacke River ・ Stewiacke Valley ・ Stewie ・ Stewie (cat) ・ Stewie Dempster ・ Stewie Goes for a Drive ・ Stewie Griffin ・ Stewie is Enceinte ・ Stewie Kills Lois and Lois Kills Stewie ・ Stewie Loves Lois ・ Stewie Speer ・ Stewie, Chris, & Brian's Excellent Adventure
|
|
Stewart–Walker lemma : ウィキペディア英語版 | Stewart–Walker lemma The Stewart–Walker lemma provides necessary and sufficient conditions for the linear perturbation of a tensor field to be gauge-invariant. if and only if one of the following holds 1. 2. is a constant scalar field 3. is a linear combination of products of delta functions == Derivation ==
A 1-parameter family of manifolds denoted by with has metric . These manifolds can be put together to form a 5-manifold . A smooth curve can be constructed through with tangent 5-vector , transverse to . If is defined so that if is the family of 1-parameter maps which map and then a point can be written as . This also defines a pull back that maps a tensor field back onto . Given sufficient smoothness a Taylor expansion can be defined : is the linear perturbation of . However, since the choice of is dependent on the choice of gauge another gauge can be taken. Therefore the differences in gauge become . Picking a chart where and then which is a well defined vector in any and gives the result : The only three possible ways this can be satisfied are those of the lemma.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Stewart–Walker lemma」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|